Bóson de Higgs: a descoberta de uma partícula revolucionária
Depois de analisarem trilhões de colisões de prótons produzidas em 2011 e em parte deste ano no Grande Acelerador de Hádrons (LHC), físicos dos dois maiores experimentos tocados de forma independente no Centro Europeu de Energia Nuclear (Cern) anunciaram nesta quarta-feira (4), nos arredores de Genebra (Suíça), a descoberta de uma nova partícula que tem quase todas as características do bóson de Higgs, embora ainda não possam assegurar com certeza de que se trata especificamente desse ou de algum outro tipo de bóson.
“Observamos em nossos dados sinais claros de uma nova partícula na região de massa em torno de 126 GeV (Giga-elétron-volts)”, disse a física Fabiola Gianotti, porta-voz do experimento Atlas. “Mas precisamos um pouco mais de tempo para prepararmos os resultados para publicação.” As informações provenientes de outro experimento feito no Cern, o CMS, são praticamente idênticas.
“Os resultados são preliminares, mas os sinais que vemos em torno da região com massa de 125 GeV são dramáticos. É realmente uma nova partícula. Sabemos que deve ser um bóson e é o bóson mais pesado que achamos”, afirmou o porta-voz do experimento CMS, o físico Joe Incandela. Se tiver mesmo uma massa de 125 ou 126 GeV, a nova partícula será tão pesada quanto um átomo do elemento químico iodo.
Em ambos os casos experimentos, o grau de confiabilidade das análises estatísticas atingiu o nível que os cientistas chamam de 5 sigma. Nesses casos, a chance de erro é de uma em três milhões. Ou seja, com esse nível de certeza, é possível falar que houve uma descoberta, só não se conhece em detalhes a natureza da partícula encontrada.
“É incrível que essa descoberta tenha acontecido durante a minha vida”, comenta Peter Higgs, o físico teórico britânico que, há 50 anos, ao lado de outros cientistas, previu a existência desse tipo de bóson. Ainda neste mês, um artigo com os dados do LHC deverá ser submetido a uma revista científica. Até o final do ano, quando acelerador será fechado para manutenção por ao menos um ano e meio, mais dados devem ser produzidos pelos dois experimentos.
Em Lindau, uma pequena cidade do sul da Alemanha à beira do lago Constance na divisa com a Áustria e a Suíça, onde ocorre nesta semana o 62º Encontro de Prêmios Nobel, os pesquisadores comemoraram a notícia vinda dos experimentos no Cern. Como o tema do encontro deste ano era física, não faltaram laureados com a maior honraria da ciência para comentar o feito.
“Não sabemos se é o bóson (de Higgs), mas é um bóson”, disse o físico teórico David J. Gross, da Universidade de Califórnia, ganhador do Nobel de 2004 pela descoberta da liberdade assintótica. “Estou rindo o dia todo.” O físico experimental Carlo Rubia, ex-diretor geral do Cern e ganhador do Nobel de 1984 por trabalhos que levaram à identificação de dois tipos de bósons (o W e Z), foi na mesma linha de raciocínio. “Estamos diante de um marco”, afirmou.
Talvez com um entusiasmo um pouco menor, mas ainda assim reconhecendo a enorme importância do achado no Cern, dois outros Nobel deram sua opinião sobre a notícia do dia. “É algo que esperávamos há anos”, afirmou o físico teórico holandês Martinus Veltman, que recebeu o prêmio em 1999. “O modelo padrão ganhou um degrau maior de validade.”
Para o cosmologista americano George Smoot, ganhador do Nobel de 2006 pela descoberta da radiação cósmica de fundo (uma relíquia do Big Bang, a explosão primordial que criou o Universo), ainda deve demorar uns dois ou três anos para os cientistas realmente saberem que tipo de nova partícula foi realmente descoberta. Se a nova partícula não for o bóson de Higgs, Smoot disse que seria “maravilhoso se fosse algo relacionado com a matéria escura”, um misterioso componente que, ao lado da matéria visível e da ainda mais desconhecida energia escura, seria um dos pilares do Universo.
Não é possível medir de forma direta partículas com as propriedades do bóson de Higgs, mas sua existência, ainda que fugaz, deixaria rastros, que, estes sim, poderiam ser detectados num acelerador de partículas tão potente como o LHC. Instáveis e fugazes, os bósons de Higgs sobrevivem uma ínfima fração de segundo – até decaírem e virarem partículas menos pesadas, que, por sua vez, decaem também e dão origem a partículas ainda mais leves.
O modelo padrão prevê que, em função de sua massa, os bósons de Higgs devem decair em diferentes canais, ou seja, em distintas combinações de partículas mais leves, como dois fótons ou quatro léptons. Nos experimentos feitos no Cern, dos quais participaram cerca de 6 mil físicos, foram encontradas evidências quase inequívocas das formas de decaimento que seriam a assinatura típica dos bóson de Higgs.
Fonte: Agência Fapesp